博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
从零开始搭建神经网络
阅读量:2153 次
发布时间:2019-04-30

本文共 7943 字,大约阅读时间需要 26 分钟。

欢迎访问留言讨论呀,有问必答哦^_^

PS:花了一个晚上终于搞定了第三周的作业,下周也要加油啊!?

//////

从头开始搭建神经网络

双层神经网络

模块导入

import numpy as np  import matplotlib.pyplot as plt  import sklearn  import sklearn.datasets  import sklearn.linear_model  from planar_utils import plot_decision_boundary, sigmoid , load_planar_dataset    %matplotlib inline    np.random.seed(1)
X, Y = load_planar_dataset()#加载数据

数据可视化

plt.scatter(X[0, :], X[1, :], c = np.squeeze(Y), s = 40, cmap=plt.cm.Spectral)

[外链图片转存失败(img-BZ767nBS-1565067964715)()]

数据分析

shape_X = X.shape  shape_Y = Y.shape  m = Y.shape[1]    print(shape_X)  print(shape_Y)  print(m)
(2, 400)  (1, 400)  400

神经搭建

数据结构获取

def layer_size(X, Y):      n_x = X.shape[0]      n_h = 4      n_y = Y.shape[0]            return (n_x, n_h, n_y)

参数初始化

def initialize_parametiers(n_x, n_h, n_y):      np.random.seed(2)      W1 = np.random.randn(n_h, n_x) *  0.01      b1 = np.zeros(shape=(n_h, 1))      W2 = np.random.randn(n_y, n_h) * 0.01      b2 = np.zeros(shape=(n_y, 1))            assert(W1.shape == (n_h, n_x))      assert(b1.shape == (n_h, 1))      assert(W2.shape == (n_y, n_h))      assert(b2.shape == (n_y, 1))            parameters = {
"W1" : W1, "b1" : b1, "W2" : W2, "b2" : b2 } return parameters

向前传播

def forward_propagation(X, parameters):      W1 = parameters["W1"]      b1 = parameters["b1"]      W2 = parameters["W2"]      b2 = parameters["b2"]            Z1 = np.dot(W1, X) + b1      A1 = np.tanh(Z1)            Z2 = np.dot(W2, A1) + b2      A2 = sigmoid(Z2)            assert(A2.shape == (1, X.shape[1]))      cache = {
"Z1" : Z1, "A1" : A1, "Z2" : Z2, "A2" : A2 } return (A2, cache)

计算成本函数

def compute_cost(A2, Y, parameters):      m = Y.shape[1]      W1 = parameters["W1"]      W2 = parameters["W2"]            logprobs = np.multiply(np.log(A2), Y) + np.multiply( np.log(1 - A2), (1 - Y))      cost = -np.sum(logprobs) / m      cost = float(np.squeeze(cost))            assert(isinstance(cost, float))            return cost

反向传播

def backward_propagation(parameters, chche, X, Y):      m = X.shape[1]            W1 = parameters["W1"]      W2 = parameters["W2"]            A1 = chche["A1"]      A2 = chche["A2"]            dZ2 = A2 - Y      dW2 = (1 / m) * np.dot(dZ2, A1.T)      db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)      dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))      dW1 = (1 / m) * np.dot(dZ1, X.T)      db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)            grads = {
"dW1" : dW1, "db1" : db1, "dW2" : dW2, "db2" : db2 } return grads

更新参数

def update_parameters(parameters, grads, learning_rate=1.2):      W1, W2 = parameters["W1"], parameters["W2"]      b1, b2 = parameters["b1"], parameters["b2"]            dW1, dW2 = grads["dW1"], grads["dW2"]      db1, db2 = grads["db1"], grads["db2"]            W1 = W1 - learning_rate * dW1      b1 = b1 - learning_rate * db1      W2 = W2 - learning_rate * dW2      b2 = b2 - learning_rate * db2            parameters = {
"W1" : W1, "b1" : b1, "W2" : W2, "b2" : b2 } return parameters

整合

def nn_model(X, Y, n_h, num_iterations, learning_rate=0.5, print_cost=False):      np.random.seed(3)      n_x, n_y = layer_size(X, Y)[0], layer_size(X, Y)[2]            parameters = initialize_parametiers(n_x, n_h, n_y)      W1, b1 = parameters["W1"], parameters["b1"]      W2, b2 = parameters["W2"], parameters["b2"]            for i in range(num_iterations):          A2, cache = forward_propagation(X, parameters)          cost = compute_cost(A2, Y, parameters)          grads = backward_propagation(parameters, cache, X, Y)          parameters = update_parameters(parameters, grads, learning_rate)                    if print_cost:              if i % 1000 == 0:                  print("第%d次循环, 成本为:%s" % (i, str(cost)))            return parameters

构建预测

def predict(parameters, X):      A2, cache = forward_propagation(X, parameters)      predictions = np.round(A2)            return predictions

模型预测

parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)    #plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)  plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))  plt.title("Decison Boundary for hidden layer size" + str(4))    predictions = predict(parameters, X)  print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
第0次循环, 成本为:0.6930480201239823  第1000次循环, 成本为:0.3098018601352803  第2000次循环, 成本为:0.2924326333792646  第3000次循环, 成本为:0.2833492852647412  第4000次循环, 成本为:0.27678077562979253  第5000次循环, 成本为:0.26347155088593144  第6000次循环, 成本为:0.24204413129940763  第7000次循环, 成本为:0.23552486626608762  第8000次循环, 成本为:0.23140964509854278  第9000次循环, 成本为:0.22846408048352365  准确率: 90%

[外链图片转存失败(img-yCZ2kkTe-1565067964716)()]

plt.figure(figsize=(16, 32))  hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量  for i, n_h in enumerate(hidden_layer_sizes):      plt.subplot(5, 2, i + 1)      plt.title('Hidden Layer of size %d' % n_h)      parameters = nn_model(X, Y, n_h, num_iterations=5000)      plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))      predictions = predict(parameters, X)      accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)      print ("隐藏层的节点数量: {}  ,准确率: {} %".format(n_h, accuracy))
隐藏层的节点数量: 1  ,准确率: 67.25 %  隐藏层的节点数量: 2  ,准确率: 66.5 %  隐藏层的节点数量: 3  ,准确率: 89.25 %  隐藏层的节点数量: 4  ,准确率: 90.0 %  隐藏层的节点数量: 5  ,准确率: 89.75 %  隐藏层的节点数量: 20  ,准确率: 90.0 %  隐藏层的节点数量: 50  ,准确率: 89.75 %

[外链图片转存失败(img-SpoxUCuu-1565067964717)()]

planar_utils.py文件源码

import matplotlib.pyplot as plt  import numpy as np  import sklearn  import sklearn.datasets  import sklearn.linear_model    def plot_decision_boundary(model, X, y):      # Set min and max values and give it some padding      x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1      y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1      h = 0.01      # Generate a grid of points with distance h between them      xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))      # Predict the function value for the whole grid      Z = model(np.c_[xx.ravel(), yy.ravel()])      Z = Z.reshape(xx.shape)      # Plot the contour and training examples      plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)      plt.ylabel('x2')      plt.xlabel('x1')      plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)      def sigmoid(x):      s = 1/(1+np.exp(-x))      return s    def load_planar_dataset():      np.random.seed(1)      m = 400 # number of examples      N = int(m/2) # number of points per class      D = 2 # dimensionality      X = np.zeros((m,D)) # data matrix where each row is a single example      Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)      a = 4 # maximum ray of the flower        for j in range(2):          ix = range(N*j,N*(j+1))          t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta          r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius          X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]          Y[ix] = j        X = X.T      Y = Y.T        return X, Y    def load_extra_datasets():        N = 200      noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)      noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)      blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)      gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)      no_structure = np.random.rand(N, 2), np.random.rand(N, 2)        return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

请勿留言,本博文只做分享,由要咨询博主问题的请访问博主

转载地址:http://dhpwb.baihongyu.com/

你可能感兴趣的文章
阿里云《云原生》公开课笔记 第三章 kubernetes核心概念
查看>>
阿里云《云原生》公开课笔记 第四章 理解Pod和容器设计模式
查看>>
阿里云《云原生》公开课笔记 第五章 应用编排与管理
查看>>
阿里云《云原生》公开课笔记 第六章 应用编排与管理:Deployment
查看>>
阿里云《云原生》公开课笔记 第七章 应用编排与管理:Job和DaemonSet
查看>>
阿里云《云原生》公开课笔记 第八章 应用配置管理
查看>>
阿里云《云原生》公开课笔记 第九章 应用存储和持久化数据卷:核心知识
查看>>
linux系统 阿里云源
查看>>
国内外helm源记录
查看>>
牛客网题目1:最大数
查看>>
散落人间知识点记录one
查看>>
Leetcode C++ 随手刷 547.朋友圈
查看>>
手抄笔记:深入理解linux内核-1
查看>>
内存堆与栈
查看>>
Leetcode C++《每日一题》20200621 124.二叉树的最大路径和
查看>>
Leetcode C++《每日一题》20200622 面试题 16.18. 模式匹配
查看>>
Leetcode C++《每日一题》20200625 139. 单词拆分
查看>>
Leetcode C++《每日一题》20200626 338. 比特位计数
查看>>
Leetcode C++ 《拓扑排序-1》20200626 207.课程表
查看>>
Go语言学习Part1:包、变量和函数
查看>>